Regulare Expressions fur
Text-Stammdaten

Grundprinzip

Flr Strings werden ab der Version 13.2.8 werden normale regulare Expressions genutzt. Damit sind
grundsatzlich Zeichenauswahl-Filter ([eghl) , vordefinierte Zeichenklassen (\d - Zahl), Quantoren
und auch die Behandlung von Sonderzeichen mdglich fir komplexere mehrzeilige Ausdrucks-
Vergleiche.

Es ist lediglich zu beachten, dass zunachst immer die <Filterfunktion> getrennt durch das Tilde-
Zeichen ~ und der regularen Expression definiert sein muss. Die Grof3-und Kleinschreibung wird
ignoriert.

Nutzbare Stammdaten

Folgende Stammdaten-Felder lassen sich in Filtern auswerten und nutzen.

Wert Riickgabe-Beispiel Semantik und Besonderheiten
WKN <WKN>
ISIN oder Symbol <ISIN>

Videotextname

Markt _DAX_,_MDAX_ analog Segments nur mit Kurznamen
der Markte und Verwendung von _

Notizen Mehrzeiliger Text, der Gber den Chart
oder Uber Doppelklick auf einen Titel
gepflegt werden kann

Kurzname

BasiswertISIN

Wert

Variables

Segments

Watchlists

Riickgabe-Beispiel Semantik und Besonderheiten
Yahoo-Symobl[isin]:LEO, Zugeordnete und vorhandene
Internet-Variablen z.B. Yahoo-
Symbole

<Variablenname>:<Wert>,

DAX,MDAX,Deutschland, Zugeordnete
<Marktsegment>,

Markte,meineWatchlist,*Depot, Zugeordnete
<Watchlist>,

Verwendung von regulare

Expressions

Weitere Details zur Verwendung finden Sie hier:

https://www.regular-expressions.info/reference.html oder

https://de.wikipedia.org/wiki/Requl%C3%A4rer Ausdruck

Regular Expression Basic Syntax

Reference

Character

Any character except [\"$.|?*+()

\ (backslash) followed by any
of *$.[7*+(){}

\Q...\E

Characters
Description Example

All characters except the listed a matches a
special characters match a single

instance of themselves. { and } are

literal characters, unless they're part

of a valid regular expression token

(e.g. the {n} quantifier).

A backslash escapes special \+ matches +
characters to suppress their special

meaning.

Matches the characters \Q+-*/\E matches+-*/

between \Q and \E literally,
suppressing the meaning of special
characters.

https://www.regular-expressions.info/reference.html
https://de.wikipedia.org/wiki/Regul%C3%A4rer_Ausdruck
https://www.regular-expressions.info/characters.html

\xFF where FF are 2 hexadecimal
digits

\n, \r and \t

\a, \e, \f and\v

\cA through \cZ

Matches the character with the
specified ASCII/ANSI value, which
depends on the code page used. Can
be used in character classes.

Match an LF character, CR character
and a tab character respectively. Can
be used in character classes.

Match a bell character (\x07), escape
character (\x1B), form feed (\x0C) and
vertical tab (\xOB) respectively. Can
be used in character classes.

Match an ASCII character Control+A
through Control+Z, equivalent
to\x01 through \x1A. Can be used in
character classes.

\XxA9 matches © when using the Latin-
1 code page.

\r\n matches a DOS/Windows CRLF
line break.

\cM\c)] matches a DOS/Windows CRLF
line break.

Character Classes or Character Sets [abc]

Character

[(opening square bracket)

Any character except ~-]\ add that
character to the possible matches for
the character class.

\ (backslash) followed by any of ~-]\

- (hyphen) except immediately after
the opening [

~ (caret) immediately after the
opening [

\d, \w and \s

Description

Starts a character class. A character
class matches a single character out
of all the possibilities offered by the
character class. Inside a character
class, different rules apply. The rules
in this section are only valid inside
character classes. The rules outside
this section are not valid in character
classes, except for a few character
escapes that are indicated with "can
be used inside character classes".

All characters except the listed
special characters.

A backslash escapes special
characters to suppress their special
meaning.

Specifies a range of characters.
(Specifies a hyphen if placed
immediately after the opening [)

Negates the character class, causing
it to match a single characternot
listed in the character class.
(Specifies a caret if placed anywhere
except after the opening [)

Shorthand character classes matching
digits, word characters (letters, digits,
and underscores), and whitespace
(spaces, tabs, and line breaks). Can
be used inside and outside character
classes.

Example

[abc] matches a, b orc

[\"™\1] matches ~ or]

[a-zA-Z0-9] matches any letter or digit

[~a-d] matches x (any character
excepta, b, cord)

[\d\s] matches a character that is a
digit or whitespace

https://www.regular-expressions.info/charclass.html

\D, \W and \S

[\b]

. (dot)

~ (caret)

$ (dollar)

\A

\Z

\z

Character

Character

Character

Negated versions of the above.
Should be used only outside character
classes. (Can be used inside, but that
is confusing.)

Inside a character class, \b is a
backspace character.

Dot
Description

Matches any single character except
line break characters \r and \n. Most
regex flavors have an option to make
the dot match line break characters
too.

Anchors
Description

Matches at the start of the string the
regex pattern is applied to. Matches a
position rather than a character. Most
regex flavors have an option to make
the caret match after line breaks (i.e.
at the start of a line in a file) as well.

Matches at the end of the string the
regex pattern is applied to. Matches a
position rather than a character. Most
regex flavors have an option to make
the dollar match before line breaks
(i.e. at the end of a line in a file) as
well. Also matches before the very
last line break if the string ends with a
line break.

Matches at the start of the string the
regex pattern is applied to. Matches a
position rather than a character.
Never matches after line breaks.

Matches at the end of the string the
regex pattern is applied to. Matches a
position rather than a character.
Never matches before line breaks,
except for the very last line break if
the string ends with a line break.

Matches at the end of the string the
regex pattern is applied to. Matches a
position rather than a character.
Never matches before line breaks.

Word Boundaries

Description

\D matches a character that is not a
digit

[\b\t] matches a backspace or tab
character

Example

. matches x or (almost) any other
character

Example

~. matches a inabc\ndef. Also
matches d in "multi-line" mode.

.$ matches f inabc\ndef. Also
matches c in "multi-line" mode.

\A. matches a in abc

\Z matches f inabc\ndef

\\z matches f inabc\ndef

Example

https://www.regular-expressions.info/dot.html
https://www.regular-expressions.info/anchors.html
https://www.regular-expressions.info/wordboundaries.html

\b

\B

Character
| (pipe)
| (pipe)

Character

? (question mark)

??

* (star)

*? (lazy star)

Matches at the position between a
word character (anything matched

by \w) and a non-word character
(anything matched by [~\w] or \W) as
well as at the start and/or end of the
string if the first and/or last characters
in the string are word characters.

Matches at the position between two
word characters (i.e the position
between \w\w) as well as at the
position between two non-word
characters (i.e. \W\W).

Alternation
Description

Causes the regex engine to match
either the part on the left side, or the
part on the right side. Can be strung
together into a series of options.

The pipe has the lowest precedence
of all operators. Use grouping to
alternate only part of the regular
expression.

Quantifiers
Description

Makes the preceding item optional.
Greedy, so the optional item is
included in the match if possible.

Makes the preceding item optional.
Lazy, so the optional item is excluded
in the match if possible. This
construct is often excluded from
documentation because of its limited
use.

Repeats the previous item zero or
more times. Greedy, so as many
items as possible will be matched
before trying permutations with less
matches of the preceding item, up to
the point where the preceding item is
not matched at all.

Repeats the previous item zero or
more times. Lazy, so the engine first
attempts to skip the previous item,
before trying permutations with ever
increasing matches of the preceding
item.

\\b matches c in abc

\B.\B matches b in abc

Example

abc|def|xyz matchesabc, def or xyz

abc(def|xyz)matches abcdef orabcxyz

Example

abc? matches ab orabc

abc?? matches ab orabc

" *" matches"def" "ghi" inabc "def"
"ghi" jkl

" *?" matches "def"inabc "def" "ghi"
jkl

https://www.regular-expressions.info/alternation.html
https://www.regular-expressions.info/repeat.html

+ (plus)

+7? (lazy plus)

{n} where nis aninteger >=1

{n,m} wheren>=0and m >=n

{n,m}? wheren>=0and m >=n

{n,} wheren>=0

{n,}? wheren >=0

Repeats the previous item once or
more. Greedy, so as many items as
possible will be matched before trying
permutations with less matches of the
preceding item, up to the point where
the preceding item is matched only
once.

Repeats the previous item once or
more. Lazy, so the engine first
matches the previous item only once,
before trying permutations with ever
increasing matches of the preceding
item.

Repeats the previous item exactly n
times.

Repeats the previous item between n
and m times. Greedy, so repeating m
times is tried before reducing the
repetition to n times.

Repeats the previous item between n
and m times. Lazy, so repeating n
times is tried before increasing the
repetition to m times.

Repeats the previous item at least n
times. Greedy, so as many items as
possible will be matched before trying
permutations with less matches of the
preceding item, up to the point where
the preceding item is matched only n
times.

Repeats the previous item n or more
times. Lazy, so the engine first
matches the previous item n times,
before trying permutations with ever
increasing matches of the preceding
item.

".+" matches"def" "ghi" inabc "def"
Ilghill jkl

".+7?" matches "def"inabc "def" "ghi"
jkl

a{3} matches aaa

a{2,4} matches aaaa,aaa or aa

a{2,4}? matches aa,aaa or aaaa

a{2,} matches aaaaain aaaaa

a{2,}? matches aa inaaaaa

Regular Expression Advanced Syntax

Reference

Syntax

Grouping and Backreferences

Description

Example

https://www.regular-expressions.info/brackets.html

(regex)

(?:regex)

\1 through \9

Syntax

(?0)

(?-m)

(?x)

(?-x)

Round brackets group the regex
between them. They capture the text
matched by the regex inside them
that can be reused in a
backreference, and they allow you to
apply regex operators to the entire
grouped regex.

Non-capturing parentheses group the
regex so you can apply regex
operators, but do not capture
anything and do not create
backreferences.

Substituted with the text matched
between the 1st through 9th pair of
capturing parentheses. Some regex
flavors allow more than 9
backreferences.

Modifiers
Description

Turn on case insensitivity for the
remainder of the regular expression.
(Older regex flavors may turn it on for
the entire regex.)

Turn off case insensitivity for the
remainder of the regular expression.

Turn on "dot matches newline" for the
remainder of the regular expression.
(Older regex flavors may turn it on for
the entire regex.)

Turn off "dot matches newline" for the
remainder of the regular expression.

Caret and dollar match after and
before newlines for the remainder of
the regular expression. (Older regex
flavors may apply this to the entire
regex.)

Caret and dollar only match at the
start and end of the string for the
remainder of the regular expression.

Turn on free-spacing mode to ignore
whitespace between regex tokens,
and allow # comments.

Turn off free-spacing mode.

(abc){3}matchesabcabcabc. First
group matches abc.

(?:abc){3}matchesabcabcabc. No
groups.

(abc|def)=\1matchesabc=abc ordef=
def, but not abc=def ordef=abc.

Example

te(?i)stmatches teSTbut not TEST.

(?i)te(?-i)stmatches TEstbut not TEST.

https://www.regular-expressions.info/modifiers.html

(?i-sm)

(?i-sm:regex)

(?>regex)

7+, *+, ++ and{m,n}+

(?=regex)

Syntax

Syntax

Turns on the option "i" and turns off
"s" and "m" for the remainder of the
regular expression. (Older regex
flavors may apply this to the entire
regex.)

Matches the regex inside the span
with the option "i" turned on and "m"
and "s" turned off.

(?i:te)stmatches TEstbut not TEST.

Atomic Grouping and Possessive Quantifiers

Description

Atomic groups prevent the regex
engine from backtracking back into
the group (forcing the group to
discard part of its match) after a
match has been found for the group.
Backtracking can occur inside the
group before it has matched
completely, and the engine can
backtrack past the entire group,
discarding its match entirely.
Eliminating needless backtracking
provides a speed increase. Atomic
grouping is often indispensable when
nesting quantifiers to prevent a
catastrophic amount of backtracking
as the engine needlessly tries
pointless permutations of the nested
quantifiers.

Possessive quantifiers are a limited
yet syntactically cleaner alternative to
atomic grouping. Only available in a
few regex flavors. They behave as
normal greedy quantifiers, except
that they will not give up part of their
match for backtracking.

Lookaround
Description

Zero-width positive lookahead.
Matches at a position where the
pattern inside the lookahead can be
matched. Matches only the position. It
does not consume any characters or
expand the match. In a pattern
likeone(?=two)three,

both two and three have to match at
the position where the match

of one ends.

Example

x(?>\w+)x is more efficient
than x\w+x if the second x cannot be
matched.

X++ is identical to (?>x+)

Example

t(?=s)matches the second t instreets.

https://i-smregex/
https://www.regular-expressions.info/atomic.html
https://www.regular-expressions.info/lookaround.html

(?!'regex)

(?<=regex)

(?<!regex)

\G

Syntax

Syntax

(?(?=regex)then|else)

(?(1)thenlelse)

Syntax

Zero-width negative lookahead.
Identical to positive lookahead,

except that the overall match will only

succeed if the regex inside the
lookahead fails to match.

Zero-width positive lookbehind.
Matches at a position if the pattern
inside the lookahead can be matched
ending at that position (i.e. to the left
of that position). Depending on the
regex flavor you're using, you may
not be able to use quantifiers and/or
alternation inside lookbehind.

Zero-width negative lookbehind.
Matches at a position if the pattern
inside the lookahead cannot be
matched ending at that position.

Continuing from The Previous Match

Description

Matches at the position where the
previous match ended, or the position
where the current match attempt
started (depending on the tool or
regex flavor). Matches at the start of
the string during the first match
attempt.

Conditionals
Description

If the lookahead succeeds, the "then"
part must match for the overall regex
to match. If the lookahead fails, the
"else" part must match for the overall
regex to match. Not just positive
lookahead, but all four lookarounds
can be used. Note that the lookahead
is zero-width, so the "then" and "else"
parts need to match and consume the
part of the text matched by the
lookahead as well.

If the first capturing group took part in
the match attempt thus far, the
"then" part must match for the overall
regex to match. If the first capturing
group did not take part in the match,
the "else" part must match for the
overall regex to match.

Comments

Description

t(?!s)matches the firstt in streets.

(?<=s)tmatches the firstt in streets.

(?<!s)tmatches the second t instreets.

Example

\G[a-z] first matches a, then
matches b and then fails to match
in ab_cd.

Example

(?(?<=a)b|c)matches the
second b and the first c inbabxcac

(a)?(?(1)b|c)matches ab, the
first c and the second c inbabxcac

Example

https://www.regular-expressions.info/continue.html
https://www.regular-expressions.info/conditional.html
https://www.regular-expressions.info/comments.html

(?#comment)

Beispiele

Everything between (?# and) is
ignored by the regex engine.

a(?#foobar)bmatches ab

Das nachfolgend aufgeflhrte Feld "Katalog" als Feldname ist nur in der Katalog-Filter-Funktion
nutzbar. Die Nutzung von Expressions lasst sich hiermit aber perfekt zeigen.

Ziel

Automatische Markierung im Tai-Pan-
Katalog
aller Deutschland-Kataloge

Automatische Markierung im Tai-Pan-
Katalog
aller Leitdaten

Beispiel

Katalog~~04[1,4,6]{1}.(?!.*Stoxx.*)(
71 *Parkett.*)

Katalog~[0-
9]{3}.(Indizes|Devisen|Rohstoffe|Futu
res.*|Renditen).[0-9]

Erklarung

Maskiert alle Markte startend mit 04,
gefolgt von 1, 4 oder 6. Dann mit
einem beliebigen Zeichen und
ausschlieBlich *STOXX* und *Parkett*,
womit "044 DAX Xetra" markiert wird,
"044 DAX Parkett" jedoch nicht

1 Taipan () Kursatensialining |
.

©

Es werden alle Kataloge markiert die
mit 3 Zahlen beginnen, einem
beliebigen Zeichen fortgesetzt werden
und dann mit Indizes oder Devisen
fortgesetzt werden. Am Ende muss
nochmals mindestens eine Zahl
folgen nach einem beliebigen Zeichen
(hier Leerzeichen).

B

........

https://www.shareholder24.com/wiki/uploads/images/gallery/2022-06/image-1655735832020.png
https://www.shareholder24.com/wiki/uploads/images/gallery/2022-06/image-1655735836275.png

Ziel Beispiel Erklarung

Automatische Markierung aller Katalog~~(04[1,4,61{0,3}|[0- Start immer mit 3 Ziffern und

relevanter Markte 9]{3}.0Osterreich|[0- Ausschlu® der Parkett-Kataloge fir die
9]{3}.Danemark]|[0-9]1{3}.Schweiz|[0- 041,044,046-Kataloge. In den
9]{3}.Indizes.[0-9]|[O- anderen sind .* Joker gesetzt und
9]{3}.Devisen.[0-9]|[O- teilweise wird wie bei Indizes nach
9]{3}.Rohstoffe.[0-9]|[O- einem beliebigen Zeichen eine Ziffer

9]{3}.Futures.[0-9]|[0-
9]{3}.Zinsen|[0-
9]{3}.Deutschland)(?!.*Parkett.*).*

Revision #1
Created 20 June 2022 12:36:31 by Jens Werschmoeller
Updated 20 June 2022 12:37:23 by Jens Werschmoeller

https://www.shareholder24.com/wiki/uploads/images/gallery/2022-06/image-1655735840929.png

